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Abstract

This document describes the LEPStats4LHC package. It provides a description
of the program elements, various tests and control results, and a user’s manual.



Contents

1 Introduction 1

2 The Formalism 1

2.1 Convention to Convert CLb to Gaussian Significance . . . . . . . . . . . 3

2.2 The Likelihood Ratio as a Test Statistic . . . . . . . . . . . . . . . . . . 4

2.3 Combining Channels and the Likelihood Ratio . . . . . . . . . . . . . . 5

2.4 Discriminating Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 The Fourier Transform Technique . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Systematic Uncertainty & Correlated Systematic Uncertainty . . . . . . 8

2.7 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9 Accessing Low CLb with Arbitrary Precision Libraries . . . . . . . . . . 14

3 The Implementation 14

3.1 Binning the Likelihood Ratio Distributions . . . . . . . . . . . . . . . . 14

3.1.1 MAX SIGMA global definition . . . . . . . . . . . . . . . . . . . 14

3.1.2 The sampleLR Function . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 The getMaxLogLR Function . . . . . . . . . . . . . . . . . . . . 15

3.2 Various Ways To Incorporate Systematic Errors . . . . . . . . . . . . . . 15

4 User Manual 16

4.1 Instalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Program Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Output to stdout & stderr . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Advanced Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Tests & Control Results 21

1



1 Introduction

This package is primarily designed to assess the discovery potential of a future experi-
ment. The focus of this package is on hypothesis testing and not on limit setting. The
package was developed for studies of the ATLAS detector’s potential to discover the
Standard Model Higgs Boson. During the development of this package, several techni-
cal challenges were encountered which were not relevant at the LEP experiments. This
document will detail the formalism of the calculation and point out those modifications
to the techniques used at LEP. Furthermore, this document will outline the layout of
the software, provide a number of tests, and serve as a user’s manual.1

This package was the subject of “Challenges in Moving the LEP Higgs Statistics to
the LHC” by K.S. Cranmer, B. Mellado, W. Quayle, Sau Lan Wu, which was published
in the proceedings of PhyStat2003, PSN MODT004 and available via the arxiv at
[physics/0312050].

The package includes a number of useful functions as well as a number command
line interfaces which calculates the significance in terms of Gaussian “sigma”. There
are four main components to the package:

• PoissonSig Used to calculate the signficance of a number couting analysis.

• PoissonSig syst Used to calculate the significance of a number counting analysis
including systematic error on the background expectation.

• Likelihood Used to calcualate the combined significance of several search chan-
nels or to calculate the significance of a search channel with a discriminating
variable.

• Likelihood syst Used to calcualate the combined significance of several search
channels including systematic errors associated with each channel.

The package also includes tools to aid in calculating the luminosity necessary to
achieve the 5σ discovery threshold and contours of −2 ln Q like Figure ??.

2 The Formalism

The formalism here is that which was used by the LEP Higgs working group [?, ?]: it is
a classical, or frequentist, technique. In order to include systematic errors, the Cousins-
Highland approach has been adopted [?]. Furthermore, specific numerical techniques

1This package was previously called UWStatTools, but is no longer available via the

wisconsin.cern.ch website. it is now being distributed via PhyStat.org.
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used at ALEPH which perform covolutions using the Fourier Transform are utlized [?].
These techniques are by no means unique; the debate between frequentist and Bayesian

methods have filled volumes [?]. These techniques are what were used for LEP Higgs
searches and to that extent they have become, to some degree, accepted (or at least
acceptable) to the community.
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2.1 Convention to Convert CLb to Gaussian Significance
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Figure 1: The left plot shows the distribution of observed events for a) the background-
only hypothesis (solid line, 100 events) and the signal-plus-background hypothesis
(dashed line, 150 events). The notion of Gaussian significance is illustrated by the
separation of the medain of the signal-plus-background distribution from the median of
the background-only distribution (in units of the background-only distribution’s stan-
dard deviation). The right plot shows the background-only confidence level for a signal
expectation 10 events (shaded in green).

When we perform (or prepare for) a search for a new particle, we consider two
hypotheses: the null hypothesis (usually refered to as the background-only hypothesis
in particle physics), and some test hypothesis (usually refered to as the signal-plus-
background hypothesis in particle physics). Consider the pedagogical example of a
background process that on average produces 100 background events in a detector
during some time interval. If we were to repeat this exeriment many times, we would see
some fluctuation in the observed number of events described by a Poisson distribution.
This distribution is roughly Gaussian for large numbers of observed events. If we
wanted to test for the presence of a signal in addition to the background process, then
we can not state with total confidence if that signal is present or not. This is because
there is some probability that the background might fluctuate to mimic the presence of
a signal. To claim a discovery, the field requires a “5σ” effect - a term that is related to
a geometrical picture shown in Figure 1. A 5σ effect means that the background would
have to fluctuate by 5 of its standard deviations above its mean in order to mimick the
signal. The chance that a fluctuation this large would occur is 2.85 × 10−7. The more
fundamental concept in the 5σ discovery requirement is this probability, refered to as
the background-only confidence level, CLb.

In more general cases, the signal and background distributions are not Gaussian,
though the expression of the sensitivity in terms of Gaussian significance is intuitive.
It would therefore be nice to adapt this definition to a more general distribution. To
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do so, first we define the background confidence level,

CLb =

∫ ∞

N

ρb(n)dn (1)

which is the probability of observing N or more events if the background-only hypoth-
esis is true. In this equation, ρb is the probability density function (pdf) for observa-
tions given the background-only hypothesis. It is worth pointing out that we could use
something other than the number of events to quantify the outcome of an individual
experiment. In general, any test statistic which can quantify an individual experiment
could replace the role of n in Equation 1 (see Section 2.2).

This background confidence level is computed on a one-sided confidence interval,
meaning that the interval is bounded by N on one side, and infinity on the other.
Such a quantity can be converted into an equivalent number of Gaussian standard
deviations in a straightforward way. Taking a Gaussian distribution with mean 0 and
standard deviation 1, find the boundary, x, of a one-sided confidence interval for which
the confidence level equals the confidence level of interest. In particular, we want the
value of x which satisfies

CLb =
1 − erf(x/

√
2)

2
. (2)

where erf(x) = (2/
√

π)
∫ ∞
x

exp(−y2)dy.

A significance of 0σ corresponds to x = 0 and a confidence level of 0.5, a significance
of 1σ corresponds to x = 1 and a confidence level of (1 − 0.68)/2) = 0.16, and a
significance of 5σ corresponds2to x = 5 and a confidence level of 2.85 × 10−7.

It should further be noted that this type of generalization of significance measures
distance not from the mean of the background distribution, but from the median.
The transformation from number of events to confidence level and the transformation
from confidence level to significance are quite non-linear. Thus the mean of the signal-
plus-background distribution will be different if computed in terms of number of events,
confidence level or significance. To avoid this ambiguity, using the median of the signal-
plus-background curve when estimating the significance is preferable to the mean, as
this provides a single, well-defined value.

2.2 The Likelihood Ratio as a Test Statistic

An efficient test statistic that can be used to combine channels is the likelihood ratio [?].
The likelihood ratio is simply the ratio of the likelihood for the signal-plus-background

2This is a purely conventional conversion from confidence level to significance. Sometimes this

equivalence is quoted as 5.8 × 10−7, but careful consideration will yield the conclusion that this is the

probability of being 5 or more standard deviations away from the background expectation, not 5 or

more standard deviations above the background expectation. Equation 2 is the definition consistent

with the heuristic.
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hypothesis to the background-only hypothesis,

Q =
Ls+b

Lb
=

(sfs + bfb)

bfb
= 1 +

sfs

bfb
. (3)

In the case that the experiment is a number counting experiment, ρs and ρb are Poisson
distributions and Q can be written as

Q =
Ls+b

Lb
=

e−(s+b)(s + b)N/N !

e−bbN/N !
= e−s

(

1 +
s

b

)N

. (4)

For convenience, the natural logarithm of this expression,

q = ln Q = −s + N ln
(

1 +
s

b

)

(5)

is often taken. It can immediately be seen that this expression consists of an offset (−s)
and a term proportional to the number of events observed. This proportionality factor
can be considered to be an event weight, though in this simple example, all events are
given the same weight. Given this fact, the conversion to likelihood ratio has no impact
on the significance of a simple counting analysis.

2.3 Combining Channels and the Likelihood Ratio

To combine two channels, one simply multiplies the likelihood ratios together (or adds
the log-likelihood ratios). For Nch channels, this becomes

q = ln Q = −
Nch
∑

i=1

si +

Nch
∑

i=1

Ni ln

(

1 +
si

bi

)

(6)

where si, bi and Ni are the signal expectation, background expectation and number
of events observed for the ith channel. This can be seen to consist of an offset which
is the total signal expectation for all channels and a sum over candidates, where each
candidate is given a weight dependent on its channel’s purity.

As in the single channel case, the confidence level can be computed using the Pois-
son probabilities for observing various numbers of events. With multiple channels,
however, this is much more complicated, as the probability density function (pdf) for
two channels is the convolution of the single channel pdf with itself.

ρAB(q) =

∫ ∞

−∞
ρA(q′)ρB(q − q′)dq′. (7)

As a result, the multi-channel probability distribution is usually computed with Monte
Carlo techniques. Monte Carlo techniques, however, have the drawback that it is quite
time consuming to generate a sufficiently large sample when computing significances
larger than a few standard deviations and the number of expected events is quite large.
Fortunately, one can make use of analytic methods, which perform the convolution via
fast Fourier Transform (FFT), to compute the multi-channel probability distribution
quickly and accurately [?]. This will be expounded upon in the Section 2.5.
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2.4 Discriminating Variables

From a statistical point of view, calculating the likelihood with a discriminating variable
is the continuous limit of combining multiple channels (see Equation 6). Just as there
were channels with low and high purity, there are regions in the discriminating variable
with low and high purity. In LEP Higgs searches, the discriminant variable was typically
the reconstructed Higgs mass, a neural network output, or a b-tagging variable. From
Monte Carlo, it is possible to construct estimates of the signal and background pdf’s
fs(x) and fb(x), respectively.

The description of fs(x) and fb(x) is another area of concern. While a histogram
will suffice, the discontinuities in the pdf are not desirable. Furthermore, the binning
of the histogram can produce quite different discriptions of the underlying pdf. These
effects lead to a systematic associated with the binning. The LEP Higgs working group
adopted a kernel estimation technique presented by the author [?]. Kernel estimation
techniques offer an unbinned and non-parametric estimate of the pdf.

For a single event with x = xi, the log-likelihood ratio generalizes in a straight
forward manner,

q(xi) = ln Q(xi) = −s + ln

(

1 +
sfs(xi)

bfb(xi)

)

. (8)

In this way, fs(x) and fb(x) are mapped into an expected distribution of q(x). For the
background-only hypothesis, fb(x) provides the probability of corresponding values of
q needed to define the single event pdf ρ1.

ρ1,b(q(x)) = fb(x) (9)

The construction of the ρ1 distributions for signal and background is typically ob-
tained by scanning over the discriminating variable x. The result of this discrete scan
is that the continuous f(x) is not mapped into a continuous ρ1 distribution. This is an
area for improvement. Because the map from q(x) : x → q is many-to-one, it is not in-
vertable; thus it is difficult to interpolate. For example, samples xi and xi+1 correspond
to qi and qi+1 such that ρ1(qi) = f(xi) and ρ1(qi+1) = f(xi+1), but for q∗ ∈ [qi, qi+1] it
is not clear what ρ1(q

∗) is because we do not have the (possibly many) corresponding
f(x∗). One possibility is to use kernel estimation on the samples qi with weights ρ1(qi)
to produce a continuous estimate of ρ1 distribution [?]. This technique is only appli-
cable for the case of a discriminating variable and should not be used for a naturally
discrete combination of multiple channels. The bare essentials for this technique are
included in the code, see Section 3.1.2.
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2.5 The Fourier Transform Technique

For multiple events, the distribution of the log-likelihood ratio must be obtained from
repeated convolutions of the single event distribution [?]. In the Fourier domain, de-
noted with a bar, the distribution of the log-likelihood for n particles is

ρn = ρ1
n (10)

Thus the expected log-likelihood distribution for background takes the form

ρb(q) =

∞
∑

n=0

e−bbn

n!
ρn,b(q) (11)

which in the Fourier domain is simply

ρb(q) = eb[ρ1,b(q)−1]. (12)

For the signal-plus-background hypothesis we expect s events from the ρ1,s distribution
and b events from the ρ1,b distribution which leads to

ρs+b(q) =
∞
∑

n=0

e−bbn

n!
ρn,b(q) +

∞
∑

n=0

e−ssn

n!
ρn,s(q). (13)

In the Fourier domain ρs+b is simply

ρs+b(q) = eb[ρ1,b(q)−1]+s[ρ1,s(q)−1]. (14)

Perhaps it is worth noting that ρ(q) is actually a complex valued function of the Fourier
conjugate variable of q. Thus numerically the exponentiation in Equation 14 requires
Euler’s formula eiθ = cos θ + i sin θ3.

Numerically these computations are carried out with the Fast Fourier Transform
(FFT). The FFT is performed on a finite and discrete array, beyond which the function
is considered to be periodic. Thus the range of the ρ1 distributions must be sufficiently
large to hold the resulting ρb and ρs+b distributions. If they are not, the “spill over”
beyond the maximum log-likelihood ratio qmax will “wrap around” leading to unphysical
ρ distributions. Because the range of ρb is much larger than ρ1,b it requires a very large
number of samples to describe both distributions simultaneously. This subject is taken
up in more detail in Section 3.1. The nature of the FFT results in a number of round-
off errors and limit the numerical precision to about 10−16 – which are significant for
consistently describing the significance beyond about 8σ. Extrapolation techniques and
Arbitrary Precision calculations can overcome these difficulties and are the subject of
Sections 2.8 and 2.9, respectively.

3Can’t resist pointing out e
iπ + 1 = 0
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2.6 Systematic Uncertainty & Correlated Systematic Uncertainty

For signal and background composed of several different processes, it is possible to
simply add the processes together to form a total signal and background contribution.
Thus far we have simplified the calculation by implicitly using s =

∑N
i si and b =

∑M
j bj where si is the number of signal events in the ith process and bj is the number

of background events in the jth process. It would also be possible to establish a ρ1

distribution for each process and, for instance, write

ρb(q) = e
PM

j nj [ρ1,j(q)−1]. (15)

If we consider systematic uncertainty on the number of events ni expected for the ith

process, then it is advantageous to write the distributions this way. This form allows
each process to have its own systematic uncertainty and even for a correlated systematic
error matrix Sij.

Sij = 〈(ni − 〈ni〉)(nj − 〈nj〉)〉 (16)

The Cousins-Highland formalism for including systematic errors on the normalization
of the signal and background is provided in [?] and generalized in [?, ?]. The method
considers an ensemble of possible values of the unkown ni weighted by a Gaussain
probability based on Sij

4.

ρsys(q) =

∫

...

∫

e
PK

i ni[ρ1,i(q)−1]

(

1√
2π

)K 1
√

|S|
(17)

e
PK

i

PK
j − 1

2
(ni−〈ni〉)S

−1

ij (nj−〈nj〉)
∏

i

dni

Reference [?] provides a analytic expression for the log-likelihood ratio distribution
including a correlated error matrix; however, that equation was obtained with an in-
tegration over negative numbers of expected events and does not hold. Attempts to
provide a closed form for the positive semi-definite region require analytical continua-
tion of the error function over a wide range of the complex plane. Instead, a numerical
integration over the positive semi-definite region has been adopted. The various inte-
gration techniques are the subject of Section 3.2.

The fact that negative ni occur in Equation 17 is enough to show that the distri-
bution of ni is not strictly Gaussian. In principal any distribution could be used within
this framework. Internal consistancy of this method requires that one can parametrize
this disbribution of ni to at least the same precision as the confidence level they wish
to explore. I.e. to claim a xσ discovery, one must know the systematic error asso-
ciated with the background hypothesis to the xσ level. This is a very difficult task
experimentally and raises a number of the more philosophical debates in the statistics
world.

4Technically this is not a convolution because, while, the Gaussian kernel is fixed, the ρ distributions

depend on ni the domain of the “convolution”.
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Figure 2: Comparison of CLb for Cousins-Highland and s − 1σ, b + 1σ methods.

If we take the systematic uncertainty on ni to be some fixed fraction δ of ni (e.g. a
10% systematic uncertainty), and we impose that we do not have any negative values
of ni then we arrive at a maximum signifcance xσ which we can explore in an internally
consistent way:

x < 1/δ. (18)

There are variations on this method in which Gaussian systematic errors are truncated
beyond some number of standard deviations. These may well be better discriptions
of the true uncertainty in ni than an unrestricted Gaussian. Another method which
is somewhat common is to incorporate systematic uncertainty in a reasonable and
pessimistic way. The method consists of simply reducing the number of signal events
expected by 1σ and increasing the number of background events expected by 1σ. It does
not rely on an ensemble of possible values of ni, but instead a particular and pessimistic
scenario. Without going into the relative merits of these two methods, consider a
simple number counting analysis with an expected background of 100 events and a 10%
systematic uncertainty in this expectation. For a 100 events the Poisson distribution
can be well approximated by a Gaussian distribution (and this will ease the calculation
and the example). In the Cousins-Highland formalism we can approximate Equation 17
as a convolution of two Gaussians (each with standard deviation 10 events) which results
in another Gaussian centered at 100 with a standard deviation of 10

√
2 ≈ 14.14 events.

Due to the bounds placed by Equation 18 we can reliably explore CLb up to about
the 10σ level, so we will consider a signal expectation from 0 to 50 events (0-5σ).
For a Gaussian background distribution the CLb is a simple expression with the error
function. In Figure 2 we compare these two methods and see that the Cousins Highland
produces a higher CLb (lower significance) than the s − 1σ, b + 1σ method.
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Figure 3: The pathological behavior of the unmodified Poisson significance calculation
(black). It is not only discontinuous, but also increases as the background expectation
increases. Continuity is restored with interpolation (red).

2.7 Interpolation

In a number counting experiment the background confidence level calculation for an
observation will be based on an integer-valued observed number of events N and a
real-valued expected number of events b. In this case the CLb will be given by

CLb =

∞
∑

i=N

P (i; b) =

∞
∑

i=N

e−bbi/i!. (19)

However, when assessing the discovery potential for a future experiment, we may expect
a real-valued number of observed events. Initially, the PoissonSig program was written
such that it would find the median of the Poisson distribution associated with the
signal-plus-background distribution (an integer) and then use that as N in the equation
above. This leads to the pathological behavior seen in Figure 3: the significance is not
only discontinuous, but also increases as the background expectation increases. Let us
consider the behaviour for 3 signal events in the case of 4.64 and 4.7 background events.
Figure 4 shows the cumulative distribution of the signal-plus-background distribution is
hardly changed between these two points; however, the median changes discontinuously
due to the discreteness of the Poisson distribution. Thus for 4.65 background events
N = 6 and for 4.7 background events N = 7. Thus for 4.7 background events the CLb

is less (the significance is higher).

By simply interpolating the cumulative probability and finding its intersection with
1/2, we can produce a generalized median that changes continuously. With the gen-
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Figure 4: Discontinuous change in the Median of the signal-plus-background distribu-
tion. Diagram of the Generalized Median.

eralized median of the signal-plus-background distribution we wish to evaluate CLb.
Because the Poisson distribution is discrete, we must also generalize the CLb calcula-
tion. This is done as follows:

• Let x0 be the last integer with P (x ≤ x0; s + b) < 1/2.

• Linearly Between Interpolate x0 & x0 + 1 to find β & α.

• Generalize the median as µ̃ = x0 + β.

• Generalize CLb as P (x ≥ x̃; b) := αP (x ≥ x0; b) + βP (x ≥ x0 + 1; b)

The same situation occurs in the case of the a likelihood ratio calculation, however;
the values of the likelihood ratio need not be integer-valued. Computationally, the
ρs+b distribution is a histogram possibly with many empty bins between the adjacent
non-empty bins q0 and q1. Thus one must slightly modify the interpolation algorithm
above such that α, β ∈ [0, 1], x0 → q0 and x0 + 1 → q1.
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2.8 Extrapolation

The numerical limitations in the Fourier Transform Technique (introduced in Sec-
tion 2.5) are the result of many round-off errors in the FFT. Figure 5 illustrates a
representative ρb and ρs+b distributions spanning over 16 orders of magnitude. It is
apparent that the the numerical precision is a limitation when the median of the signal-
plus-background distribution is located in these unreliable regions. For double precision
floating point numbers, these effects limit the ability to calculate significances above
about 8σ. In Section 2.9 we discuss a solution to this problem in which the FFT is
implemented with an arbitrary precision library; however, this method is excruciatingly
slow and memory intensive. Thus, in this section various extrapolation techniques are
described.

The first extrapolation technique to be applied was a simple “Gaussian extrapola-
tion” in which the ρb distribution was described by a Gaussian with the same mean
µb and standard deviation σb (not really a fit in the common sense of the word). In
this case the significance was simply quoted as σ = (µ̃ − µb)/σb (see Figure 6). For
calculations with many events, the Gaussian approximation is expected to be valid.
Because the Gaussian distribution allows for ρb(q < −stot) > 0 we expect the Gaussian
extrapolation technique to overestimate the significance in general. This behavior can
be seen in Figure 7.

The second method we studied was based on a Poisson fit to the ρb distribution.
The Poisson distribution has the desirable properties that it will have no probability
below the hard limit and that its shape is more appropriate. However, the Poisson
distribution is a discrete distribution thus we must find some affine transformation

12
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Figure 6: Diagram for the Gaussian extrapolation technique. The abcissa corresponds
to the histogram bin index of the log-likelhood ratio, in which the 0th bin corresponds
to the lower limit q = −stot (see Equation 5).

between the space of the log-likelihood ratio and the space of the Poisson distribution.
This is accomplished as follows: First we use the identity that for a Poisson distribution
the P (x;µ) the mean is given by µ and the variance is given by µ. Next we assume
that our distribution ρb(q) takes the form of a Poisson with q = αx, which forces
mean(ρb) = αµ and var(ρb) = α2µ. This gives us two equations which we can use to
solve for µ and α. With those parameters, the median of the signal-plus-background
distribution and the mean of the background-only distribution can be transformed via
α to produce the corresponding Poisson significance.

Figure 7 offers a comparison of these methods for an example ATLAS Higgs com-
bined significance calculation. For reference a (green-dotted) curve obtained from
adding in quadrature (green dotted line) is included. The red dashed line corresponds
to the unmodified likelihood ratio which can not produce significance values above
about 8σ. The Gaussian extrapolation technique tends to overestimate the signifi-
cance, while the Poisson extrapolation is well behaved across the entire mass range.
The VBF channels and the channels discussed in [?] are used for this combination.
This figure is meant to demonstrate the different methods of combination and does not
include updated numbers for non-VBF analyses. No systematic errors on background
normalization have been included.
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Figure 7: Comparison of the combined significance obtained from adding in quadrature
(green dotted line) and various likelihood ratio combinations. The red dashed line
corresponds to the unmodified likelihood ratio which can not produce significance values
above about 8σ (see text). To solve this problem Gaussian (blue dash-dotted line) and
Poisson (black solid line) extrapolation techniques have been developed.

2.9 Accessing Low CLb with Arbitrary Precision Libraries

This has not yet been implemented in this code, but has in another package. The CLN

libraries handel arbitrary precision numbers with which an arbitrary precision FFT can
be implemented. This allows one to calculate CLb to arbitrary low levels.

3 The Implementation

The LEPStats4LHC package contains the code for three libraries and a number of
sample programs. The Library is broken down into conceptual elements. The Poisson
and Likelihood calculations are, for the most part, idependent from eachother because
the ρ distributions have different test statistics for their domain. The integration,
median, and interpolation calculations are largely unified into a set of common tools.

3.1 Binning the Likelihood Ratio Distributions

3.1.1 MAX SIGMA global definition

3.1.2 The sampleLR Function
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3.1.3 The getMaxLogLR Function

double getMaxLogLR(double* sig, double* back, int nbins) {
double max = 0;
double totalsb = 0, totalb = 0;
double LR, temp, factor = 0, maxSysError = 0.1, maxSigma = MAX_SIGMA;

//This subroutine is to estimate how wide the log(LR) distribution
//will be after the series of n_particle convolutions are applied.
//The idea is that for an expected n events, the one particle LR
//distribution will be shifted by a factor of n. From Poisson
//statistics we expect most of the Poisson probability is around s+b
//+/- sqrt(s+b). We leave maxSigma standard deviations for breating
//room. So at most we expect s+b + maxSigma*sqrt(s+b) convolutions.
//In addition, if there is systematic error, then the mean may be
//s+b + maxSigma*maxSysError*(s+b). That’s the origin of "factor"
//Also, if there is systematic Error in the normalization, an upper
//limit is taken into account (currently 20%).

fprintf(stderr, "Estimating max log(LR) after convolution\n");
for(int j=0; j<nbins; j++){
totalsb += sig[j] + back[j];
totalb += back[j];

}

for(int j=0; j<nbins; j++){
if(back[j] > 0){

LR=log((sig[j]+back[j])/back[j]);
factor = (sig[j]+back[j])*(1+maxSysError*maxSigma)
+ maxSigma*sqrt((sig[j]+back[j]));
max += LR*factor;

}
}

return max;
}

3.2 Various Ways To Incorporate Systematic Errors
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4 User Manual

4.1 Instalation

The LEPStats4LHC package currently consists of three libraries with different depen-
dencies:

• libcommontools Only requires standard C++ libraries

• libffttools Requires the FFTW libraries to be installed. These libraries can be
obtained at: http://www.fftw.org/

• libgsltools Requires the FFTW libraries and the GNU Scientific Libraries (GSL).
GSL can be obtained at: http://www.gnu.org/software/gsl/gsl.html

There are four important calculations which have been implemented via a simple pro-
gram interfaced to these libraries. Hopefully these programs will be not only useful in
their own right, but also serve as examples interfaces to the libraries. The programs
and their dependencies are:

• PoissonSig Used to calculate the signficance of a number couting analysis. De-
pends on libcommontools and TestPoissonSig.cc.

• PoissonSig syst Used to calculate the significance of a number counting anal-
ysis including systematic error on the background expectation. Depends on
libcommontools and TestPoissonSig syst.cc.

• Likelihood Used to calcualate the combined significance of several search chan-
nels or to calculate the significance of a search channel with a discriminating
variable. Depends on libcommontools, libffttools and TestLikelihood.cc.

• Likelihood syst Used to calcualate the combined significance of several search
channels or to calculate the significance including systematic errors associated
with each channel. Depends on libcommontools, libffttools, libgsltools
and TestLikelihood syst.cc.

The GNU Makefile organizes the various source files into the three different libraries.
So far there is no more sophisticated technique using configure.

The installation of FFTW is fairly straightforward and well documented at
http://www.fftw.org/. No sophisticated settings are required for the LEPStats4LHC
libraries to compile. If you do not have the ability to install FFTW as root, then you
may need to change the Makefile accordingly.

The installation of GSL is also straightforward, with one exception. GSL provides a
very thorough set of tests which should be run, because with gcc version 2.96 there
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can be problems in the EigenSystem code when optimization is turned on. This can
be overcome by simply replacing the “make” step with “make CFLAGS=”-g”. In the
current version of LEPStats4LHC, the EigenSystem routines are not used, however, use
of these routines is anticipated in forthcoming releases. Below is the expected output of
the make command for LEPStats4LHC when FFTW and GSL are properly installed.

[cranmer@pcuw30 LEPStats4LHC]$ make
make lib
make[1]: Entering directory ‘/home/cranmer/LEPStats4LHC’
gcc -O3 -c -o CommonTools.o CommonTools.cc
gcc -O3 -c -o Interpolation.o Interpolation.cc
gcc -O3 -c -o Kernel.o Kernel.cc
gcc -O3 -c -o PDE.o PDE.cc
gcc -O3 -c -o TestStatistic.o TestStatistic.cc
gcc -O3 -c -o PoissonSig.o PoissonSig.cc
gcc -O3 -c -o PoissonSig_syst.o PoissonSig_syst.cc
gcc -O3 -c -o FFT_Tools.o FFT_Tools.cc
gcc -O3 -c -o Convolution.o Convolution.cc
gcc -O3 -c -o Extrapolation.o Extrapolation.cc
gcc -O3 -c -o Likelihood.o Likelihood.cc
gcc -O3 -c -o ErrorMatrix.o ErrorMatrix.cc
gcc -O3 -c -o CousinsHighland.o CousinsHighland.cc
gcc -O3 -c -o Likelihood_syst.o Likelihood_syst.cc
ar rcv libcommontools.a CommonTools.o Interpolation.o Kernel.o PDE.o TestStatistic.o PoissonSig.o PoissonSig_syst.o
r - CommonTools.o
r - Interpolation.o
r - Kernel.o
r - PDE.o
r - TestStatistic.o
r - PoissonSig.o
r - PoissonSig_syst.o
ranlib libcommontools.a
ar rcv libffttools.a FFT_Tools.o Convolution.o Extrapolation.o Likelihood.o
r - FFT_Tools.o
r - Convolution.o
r - Extrapolation.o
r - Likelihood.o
ranlib libffttools.a
ar rcv libgsltools.a ErrorMatrix.o CousinsHighland.o Likelihood_syst.o
r - ErrorMatrix.o
r - CousinsHighland.o
r - Likelihood_syst.o
ranlib libgsltools.a
rm *.o
make[1]: Leaving directory ‘/home/cranmer/LEPStats4LHC’
gcc -O3 -o PoissonSig TestPoissonSig.cc \
libcommontools.a -lm
gcc -O3 -o PoissonSig_syst TestPoissonSig_syst.cc \
libcommontools.a -lm
gcc -O3 -o Likelihood TestLikelihood.cc \
libffttools.a libcommontools.a -lrfftw -lfftw -lm
gcc -O3 -o Likelihood_syst TestLikelihood_syst.cc \
libgsltools.a libffttools.a libcommontools.a \
-lrfftw -lfftw -lm -lgsl -lgslcblas
gcc -O3 -o TestErrorMatrix TestErrorMatrix.cc \
libgsltools.a -lm -lgsl -lgslcblas
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Below is a snapshot of the files included in the release.

[cranmer@pcuw30 LEPStats4LHC]$ ls -ltr
total 168
-rw-r--r-- 1 cranmer zp 568 May 5 13:40 PDE.h
-rw-r--r-- 1 cranmer zp 3297 May 5 13:40 PDE.cc
-rw-r--r-- 1 cranmer zp 813 May 5 13:40 Kernel.h
-rw-r--r-- 1 cranmer zp 1243 May 5 13:40 Kernel.cc
-rw-r--r-- 1 cranmer zp 160 May 5 15:29 Convolution.h
-rw-r--r-- 1 cranmer zp 184 May 5 15:31 Extrapolation.h
-rw-r--r-- 1 cranmer zp 212 May 5 15:33 PoissonSig.h
-rw-r--r-- 1 cranmer zp 297 May 5 16:09 ErrorMatrix.h
-rw-r--r-- 1 cranmer zp 657 May 5 16:16 CousinsHighland.h
-rw-r--r-- 1 cranmer zp 967 May 5 16:44 PackageLayout.txt
-rw-r--r-- 1 cranmer zp 2428 May 5 17:42 TestErrorMatrix.cc
-rw-r--r-- 1 cranmer zp 905 May 6 17:15 Likelihood.h
-rw-r--r-- 1 cranmer zp 1659 May 6 17:22 ErrorMatrix.cc
-rw-r--r-- 1 cranmer zp 1233 May 6 17:24 Convolution.cc
-rw-r--r-- 1 cranmer zp 1845 May 6 17:25 DiscoveryPlot.cc
-rw-r--r-- 1 cranmer zp 1786 May 6 17:25 Extrapolation.cc
-rw-r--r-- 1 cranmer zp 2322 May 6 17:26 TestGSL.cc
-rw-r--r-- 1 cranmer zp 949 May 6 17:28 TestLikelihood.cc
-rw-r--r-- 1 cranmer zp 1246 May 6 17:28 TestLikelihood_syst.cc
-rw-r--r-- 1 cranmer zp 365 May 6 17:28 TestPoissonSig.cc
-rw-r--r-- 1 cranmer zp 479 May 6 17:29 TestPoissonSig_syst.cc
-rw-r--r-- 1 cranmer zp 287 May 7 14:08 FFT_Tools.h
-rw-r--r-- 1 cranmer zp 1479 May 7 14:17 FFT_Tools.cc
-rw-r--r-- 1 cranmer zp 12673 May 7 14:21 Likelihood_syst.cc
-rw-r--r-- 1 cranmer zp 2191 May 7 14:27 TestStatistic.cc
-rw-r--r-- 1 cranmer zp 458 May 7 14:28 TestStatistic.h
-rw-r--r-- 1 cranmer zp 4091 May 7 14:54 PoissonSig.cc
-rw-r--r-- 1 cranmer zp 9650 May 7 15:02 Likelihood.cc
-rw-r--r-- 1 cranmer zp 488 May 7 15:06 Interpolation.h
-rw-r--r-- 1 cranmer zp 283 May 7 15:06 CommonTools.h
-rw-r--r-- 1 cranmer zp 2654 May 7 15:06 CommonTools.cc
-rw-r--r-- 1 cranmer zp 3155 May 7 15:07 Interpolation.cc
-rw-r--r-- 1 cranmer zp 7914 May 7 15:20 CousinsHighland.cc
-rw-r--r-- 1 cranmer zp 3504 May 7 15:23 PoissonSig_syst.cc
-rw-r--r-- 1 cranmer zp 1561 May 7 15:28 Makefile
-rw-r--r-- 1 cranmer zp 1621 May 7 15:49 README
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4.2 Program Usage

The use of the example programs is very simple. For an experiment with S expected
signal events and B expected background events, the Poisson Significance is given by:

PoissonSig S B

If one wishes to include a relative uncertainty ∆ in the background (e.g. ∆ = 0.1
for a 10% relative uncertainty), the Poisson Significance is given by:

PoissonSig syst S B ∆

If one wishes to combine k channels or, equivalently, to include a discriminating
variable with k histogram bins, the significance using the Likelihood ratio as a test
statistic is given by:

Likelihood S1 ... Sk B1 ... Bk

If one wishes to combine k channels each with a background uncertainty of ∆i the
significance using the Likelihood ratio as a test statistic is given by:

Likelihood syst S1 ... Sk B1 ... Bk ∆1 ... ∆k

If one wishes to consider an experiment with a discriminating variable and a system-
atic error on the overall normalization of the background, then slight changes need to be
made to TestLikelihood syst.cc. Similarly, if one wishes to include several different
processes which together comprise the signal or background expectations and consider
(possibly correlated) uncertainties on each process, then more significant changes need
to be made to TestLikelihood syst.cc. These changes will be discussed in Secton 4.4.
See Section 5 for examples and “control results” with wich a new user can check their
code is running properly.

4.3 Output to stdout & stderr

In general the output of the programs is directed to two different streams: stdout and
stderr. In order to ease the use of the above programs with scripting languages, only
the resulting significance (without a following carrage return) is sent to stdout. The
rest of the output messages are directed to stderr and can be seen at the terminal.

If one wishes to direct the output of the calculation (i.e. stdout) to a file, simply:

PoissonSig S B > filename

If one wishes to direct the messages (i.e. stderr) to a file, simply:

PoissonSig S B 2> filename

If one wishes to direct all the output (i.e. stdout and stderr) to a file, simply

PoissonSig S B > filename 2>&1
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4.4 Advanced Usage

20



5 Tests & Control Results

In this section we present a few test cases which can also serve as “control results” with
which a new user can compare. In order to compare these results with some expectation
from first-principles, consider two samples with different purity and enough events that
the Gaussian approximation s/

√
b is fairly good indication of the significance. The first

channel (channel a) will have 10 expected signal and 100 expected background events.
The second channel (channel b) will have 300 expected signal and 10000 expected
background events. In both channels, the Poisson background-only distribution can be
fairly well approximated by a Gaussian with standard deviation of stdevb =

√
b. So we

expect for channel a about 1σ and for channel b about 3σ. Below we see the Poisson
Significance from PoissonSig.

[cranmer@pcuw30 LEPStats4LHC]$ ./PoissonSig 10 100
With No interpolation: median of rho_sb = 110

CL_b = 1.705599e-01, Significance = 0.951955
With interpolation: median = 109.333602

CL_b = 1.877295e-01, Significance = 0.886294
0.886294

[cranmer@pcuw30 LEPStats4LHC]$ ./PoissonSig 300 10000
With No interpolation: median of rho_sb = 10300

CL_b = 1.432365e-03, Significance = 2.981892
With interpolation: median = 10299.333336

CL_b = 1.463710e-03, Significance = 2.975258
2.975258

It may seem surprising that for channel a that the significance is some 12% be-
low the expectation of 1σ. This underscores the importance of the interpolation. In
fact, by raising the background expectation to 100.6, the Poisson Significance without
interpolation drops to 0.891117σ. Then raising it further to 100.7, the significance dis-
continuously jumps up to 0.977725σ. The interpolated signficance, in contrast, changes
continuously. For channel b, where the Gaussian approximation is more valid, we see
almost exactly the expected 3σ.
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Now we consider the incorporation of systematic errors with the Cousins-Highland
formalism. Again, if we approximate the background-only distribution with a Gaus-
sian, we can do this calculation on paper. First we point out that a convolution of two
Gaussians is also a Gaussian and the standard deviation of the result is given by the
sum in quadrature of the constituent Gaussians. Thus for channel a with 10% system-
atic error on the background normalization translates to an absolute systematic error of
10 events. The inherent Poissonian width of 100 events is also 10 events. Thus, the re-
sulting standard deviation is 10

√
2 =

√
102 + 102 ≈ 14.14 events. Thus the significance

is expected to be about 0.70721358σ. Again we see that without interpolation that the
significance is close to what we expected, but when we interpolate we find the signifi-
cance is about 12% lower. Indeed, if we vary the background expectation from 100.8 to
100.9 events we see the significance without interpolation discontinuously jumps from
0.625840σ up to 0.686731σ while the interplated result varies continuously.

[cranmer@pcuw30 LEPStats4LHC]$ ./PoissonSig_syst 10 100 .1

Setup Binning:
max N taken to be = 1877

Do Cousins-Highland:
doing 1000 out of 1000 MC samples
total weight = 1.000000

With No interpolation: median of rho_sb = 110
CL_b = 2.468786e-01, Significance = 0.684345

With interpolation: median of rho_sb = 109.174553
CL_b = 2.651717e-01, Significance = 0.627482

0.627482

For channel b a 1% systematic error translates to 100 events. Similarly the inherent
Poissonian width is about 100 events. Thus the resulting standard deviation is about
100

√
2 ≈ 141.4 events and we expect the significance to be about 2.1213203σ. Below

we see the results from PoissonSig syst – which are quite close to the expectation
from the approximate methods above.

[cranmer@pcuw30 LEPStats4LHC]$ ./PoissonSig_syst 300 10000 .01

Setup Binning:
max N taken to be = 175107

Do Cousins-Highland:
doing 1000 out of 1000 MC samples
total weight = 1.000000

With No interpolation: median of rho_sb = 10300
CL_b = 1.744363e-02, Significance = 2.109665

With interpolation: median of rho_sb = 10299.169127
CL_b = 1.769621e-02, Significance = 2.103840

2.103840
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For a single channel the Likelihood ratio should reproduce the Poisson calculation
exactly (and so should the Poisson Extrapolation technique). Below we see the results
for channel a are reproduced with the Likelihood program.

[cranmer@pcuw30 LEPStats4LHC]$ ./Likelihood 10 100

----------------------Setup Binning----------------------

For a single Channel: min log(LR) = 0.095310 max log(LR) = 0.095310
totalS = 10.000000 totalB = 100.000000

Estimating max log(LR) after convolution:
bin 0: log(LR) = 0.095310, rho_b = 100.000000, rho_sb = 110.000000

Set Global log(LR): min = 0.000000 max = 26.868388
Need at least 2^9 bins, Perfect binning needs 2^9 bins
Have 2^18 bins, bins for Rho1 = 929.902881

-----------------------Doing FFT’s-----------------------

Problem Index for Rho_b = 0.000000
Problem Index for Rho_s+b = 0.000000

-------------About to Calculate Significance-------------

Gaussian Approx: median of rho_b is 10.000108 stdev from hard limit
Significance is 0.999892

Poisson Approx: mean of rho_b = 92900.000000, stdev = 9290.000000
Calculated nu = 100.000000, alpha = 929.000000
Corresponds to Poisson with b=100.000000 and s+b=109.333602
With No interpolation: median of rho_sb = 110

CL_b = 1.705599e-01, Significance = 0.951955
With interpolation: median of rho_sb = 109.333602

CL_b = 1.877295e-01, Significance = 0.886294
CL_b integration with no interpolation:

median of rho_b = 102190, Significance = 0.951955
CL_b integration with interpolation:

lowerBin = 101261, upperBin = 102190
beta = 0.333602, generalized median = 101570.916684
Significance with Interpolation = 0.886294

-------------------------Summary-------------------------

Sigma(CL_b) Sigma(CL_b)(no interp) Sigma_Gauss Sigma_Poisson
0.886294 0.951955 0.999892 0.886294

Will use integrated CL_b because Gaussian Approx = 0.999892 < 6
Significance = 0.886294
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We also wish to see if the calculation with systematic errors agrees. Because the
Cousins-Highland formalism is implemented (in this case) with a Monte Carlo integra-
tion over the expected number of background events, the result has a relative uncer-
tainty of about 1/

√
N , where N is the number of Monte Carlo samples in the inte-

gration. For N = 1000, this relative uncertainty is about 3.16%, which translates into
an absolute uncertainty of about 0.067σ. The PoissonSig syst and Likelihood syst

calculations agree within this margin of error.

[cranmer@pcuw30 LEPStats4LHC]$ ./Likelihood_syst 300 10000 .01
-------------Using the Following Uncertainty-------------

For Process 0: signal uncertainty = 0.000000
For Process 0: background uncertainty = 0.010000

----------------------Setup Binning----------------------

For a single Channel: min log(LR) = 0.029559 max log(LR) = 0.029559
totalS = 300.000000 totalB = 10000.000000

Estimating max log(LR) after convolution:
bin 0: log(LR) = 0.029559, rho_b = 10000.000000, rho_sb = 10300.000000

Set Global log(LR): min = 0.000000 max = 572.019320
Need at least 2^15 bins, Perfect binning needs 2^15 bins
Have 2^18 bins, bins for Rho1 = 13.546155

-----------------------Doing FFT’s-----------------------

doing 1000 out of 1000 MC samples, total weight = 1.000000
totalWeight = 1.000000
doing 1000 out of 1000 MC samples, total weight = 1.000000

totalWeight = 1.000000
Problem Index for Rho_b = 0.000000
Problem Index for Rho_s+b = -0.000000

-------------About to Calculate Significance-------------

Gaussian Approx: median of rho_b is 71.979558 stdev from hard limit
Significance is 2.122190

Poisson Approx: mean of rho_b = 130027.773098, stdev = 1806.624032
Calculated nu = 5180.082583, alpha = 25.101487
Corresponds to Poisson with b=5180.082583 and s+b=5333.309402
With No interpolation: median of rho_sb = 5334

CL_b = 1.685543e-02, Significance = 2.123513
With interpolation: median of rho_sb = 5333.309402

CL_b = 1.725899e-02, Significance = 2.113968
CL_b integration with no interpolation:

median of rho_b = 133874, Significance = 2.134195
CL_b integration with interpolation:

lowerBin = 133861, upperBin = 133874
beta = 0.999540, generalized median = 133873.994025
Significance with Interpolation = 2.134192

-------------------------Summary-------------------------

Sigma(CL_b) Sigma(CL_b)(no interp) Sigma_Gauss Sigma_Poisson
2.134192 2.134195 2.122190 2.113968

Will use integrated CL_b because Gaussian Approx = 2.122190 < 6
Confidence Level is = 2.134192
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The next thing to check is the combined significance of channels a and b. The
corresponding Gaussian approximation is to add the individual channels significance in
quadrature. Thus the combined significance for channels a and b without systematic
error is

√
12 + 32 ≈ 3.1622777σ which is in good agreement with the calculation using

Likelihood.

[cranmer@pcuw30 LEPStats4LHC]$ ./Likelihood 10 300 100 10000

----------------------Setup Binning----------------------

For a single Channel: min log(LR) = 0.029559 max log(LR) = 0.095310
totalS = 310.000000 totalB = 10100.000000

Estimating max log(LR) after convolution:
bin 0: log(LR) = 0.095310, rho_b = 100.000000, rho_sb = 110.000000
bin 1: log(LR) = 0.029559, rho_b = 10000.000000, rho_sb = 10300.000000

Set Global log(LR): min = 0.000000 max = 598.887708
Need at least 2^13 bins, Perfect binning needs 2^14 bins
Have 2^18 bins, bins for Rho1 = 28.780569

-----------------------Doing FFT’s-----------------------

Problem Index for Rho_b = 0.000000
Problem Index for Rho_s+b = 0.000000

-------------About to Calculate Significance-------------

Gaussian Approx: median of rho_b is 97.860686 stdev from hard limit
Significance is 3.161401

Poisson Approx: mean of rho_b = 124100.000000, stdev = 1268.108829
Calculated nu = 9577.022560, alpha = 12.958098
Corresponds to Poisson with b=9577.022560 and s+b=9886.247273
With No interpolation: median of rho_sb = 9887

CL_b = 8.240269e-04, Significance = 3.147265
With interpolation: median of rho_sb = 9886.247273

CL_b = 8.458213e-04, Significance = 3.139625
CL_b integration with no interpolation:

median of rho_b = 128107, Significance = 3.141913
CL_b integration with interpolation:

lowerBin = 128106, upperBin = 128107
beta = 0.964233, generalized median = 128106.964233
Significance with Interpolation = 3.141885

-------------------------Summary-------------------------

Sigma(CL_b) Sigma(CL_b)(no interp) Sigma_Gauss Sigma_Poisson
3.141885 3.141913 3.161401 3.139625

Will use integrated CL_b because Gaussian Approx = 3.161401 < 6

Significance = 3.141885
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The last thing to check is the combined significance of channels a and b with
systematic errors. Again we use the corresponding Gaussian approximation, and add
the individual channels significance in quadrature. Thus the combined significance for
channels a and b with systematic error is

√
0.707213582 + 2.12132032 ≈ 2.2361018σ –

which is in good agreement with the calculation using Likelihood syst.

[cranmer@pcuw30 LEPStats4LHC]$ ./Likelihood_syst 10 300 100 10000 .1 .01

-------------Using the Following Uncertainty-------------

For Process 0: signal uncertainty = 0.000000
For Process 1: signal uncertainty = 0.000000
For Process 0: background uncertainty = 0.100000
For Process 1: background uncertainty = 0.010000

----------------------Setup Binning----------------------

For a single Channel: min log(LR) = 0.029559 max log(LR) = 0.095310
totalS = 310.000000 totalB = 10100.000000

Estimating max log(LR) after convolution:
bin 0: log(LR) = 0.095310, rho_b = 100.000000, rho_sb = 110.000000
bin 1: log(LR) = 0.029559, rho_b = 10000.000000, rho_sb = 10300.000000

Set Global log(LR): min = 0.000000 max = 598.887708
Need at least 2^13 bins, Perfect binning needs 2^14 bins
Have 2^18 bins, bins for Rho1 = 28.780569

-----------------------Doing FFT’s-----------------------

doing 1000 out of 1000 MC samples, total weight = 1.000000
totalWeight = 1.000000
doing 1000 out of 1000 MC samples, total weight = 1.000000

totalWeight = 1.000000
Problem Index for Rho_b = -0.000000
Problem Index for Rho_s+b = -0.000000

-------------About to Calculate Significance-------------

Gaussian Approx: median of rho_b is 68.688123 stdev from hard limit
Significance is 2.215621

Poisson Approx: mean of rho_b = 124096.379668, stdev = 1806.717004
Calculated nu = 4717.782983, alpha = 26.303961
Corresponds to Poisson with b=4717.782983 and s+b=4870.074407
With No interpolation: median of rho_sb = 4871

CL_b = 1.341503e-02, Significance = 2.213981
With interpolation: median of rho_sb = 4870.074407

CL_b = 1.388103e-02, Significance = 2.200632
CL_b integration with no interpolation:

median of rho_b = 128103, Significance = 2.235173
CL_b integration with interpolation:

lowerBin = 128102, upperBin = 128103
beta = 0.247336, generalized median = 128102.247336
Significance with Interpolation = 2.234740

-------------------------Summary-------------------------

Sigma(CL_b) Sigma(CL_b)(no interp) Sigma_Gauss Sigma_Poisson
2.234740 2.235173 2.215621 2.200632

Will use integrated CL_b because Gaussian Approx = 2.215621 < 6

Confidence Level is = 2.234740
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